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Influence of fluctuations on the phase diagram of chiral nematic liquid crystals

J. Englert,1 H. Stark,1 L. Longa,2 and H.-R. Trebin1
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In a recent paper@Phys. Rev. Lett.81, 1457~1998!#, we demonstrated that the phase diagram of the liquid
crystalline blue phases, as calculated by means of Landau–de Gennes theory, displays serious deficiencies,
which can only be removed if fluctuations are taken into account within statistical field theory. Here we present
details of the calculations. The influence of fluctuations is treated self-consistently within a first order cumulant
expansion. The squareD of the inverse correlation length of the alignment tensor field is introduced as an order
parameter. In a simplified model two phases of differingD appear at high chiralities, which are identified as the
isotropic phase and the isostructural blue fog. The relationship between the cumulant expansion and the
Brazovski� method is illuminated.

PACS number~s!: 64.70.Md, 05.40.2a, 61.30.Cz
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I. INTRODUCTION

Blue phases@1# belong to the liquid crystalline state, bu
they display features of solids much more than any ot
liquid crystal. The centers of mass of the molecules do
exhibit positional order. In the cubic blue phases~BP’s!,
however, the molecular axes align to form a complex lon
range orientational pattern which is periodic along all th
spatial directions. There are two cubic structures~BP I and
BP II! of nonsymmorphic space groupsO2 ~simple cubic!
and O8 ~body-centered-cubic!. Their lattice constants ar
about 500 nm, and they scatter light selectively in the visi
spectrum. Defects, like dislocations, are directly observa
in the microscope@2#. The range of existence of the blu
phases is a few K. Thus they are thermodynamic pha
which are very difficult to synthesize and to stabilize. Th
are squeezed in between the high-temperature isotropic
uid and the low-temperature cholesteric phase. Recently
the low-temperature side smectic and twist-grain bound
phases were also observed@3#, and experimental evidenc
was provided for ‘‘smectic blue phases’’@4#. The periodic
order of BP II is melting directly into the isotropic phase o
at high chiralities, into a third blue phase~BP III!. Due to its
amorphous appearance, BP III is called ‘‘blue fog.’’ On
four years ago, it was established as an isotropic ph
@5–7#. Unlike the cubic blue phases, its orientational orde
correlated only over a few pitches of the cholesteric pha
All three blue phases are viscoelastic materials with fin
shear modulus at zero frequency. The modulus continuo
approaches zero in BP III, when it is heated toward the i
tropic liquid @8#. Since the cubic blue phases break the c
tinuous translational symmetry of the isotropic liquid, th
exhibit hydrodynamic Goldstone modes equivalent to aco
tic phonons in crystals. In Ref.@9# it was demonstrated tha
they can be viewed as a pure displacement of the local al
ment tensor. The properties of these displacement modes
their appearance in light scattering experiments were th
oughly studied in Ref.@10#.

Stable structures and phase diagrams were primarily
culated by mean-field theories. Although confirming rough
the phase sequence, the mean-field calculations disagr
many aspects with the experimental results. Until recen
PRE 611063-651X/2000/61~3!/2759~10!/$15.00
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the best phase diagram was obtained by Grebelet al. ~see
Fig. 1! @11#. Using a Ginzburg–Landau–de Gennes free
ergy, they could explain the structure of the body-center
cubic blue phase I with space groupO8 (I4132) and the
simple cubic blue phase II with space groupO2 (P4232).
Near the phase transition to the isotropic phase, instea
BP III they predicted a second body centered structure w
space groupO5 (I432), which always condenses beforeO2

andO8 ~see Fig. 2!. Furthermore, they did not reproduce th
experimentally well established disappearance of the BP
for high chiralities.

Many extensions of the mean-field theory were presen
taking regard of higher order terms@12# and secondary orde
parameters@13# in the free energy. However, the inconsi
tencies of the phase diagrams could not be resolved c
pletely. Already at the early stage it was noted, that ‘‘n
glecting the fluctuations . . . may be a bad approximatio
@14#. On the other hand, it was claimed that ‘‘fluctuatio
almost undoubtedly are irrelevant at phase transitions
weak crystallization into blue phases’’@15#.

Experimentally, the situation is quite clear now. The u
versality of the phase diagrams as sketched in Fig. 3 and
documented by Yang and Crooker@16#, has been confirmed
many times. It seems to apply even to discotic systems@17#.
Very recent measurements of specific heat, rotatory pow
and light scattering@5–7# revealed evidence of a critica

FIG. 1. Phase diagram recalculated from Landau–Ginzburg
Gennes theory of Grebelet al. @11#.
2759 ©2000 The American Physical Society
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point terminating the first-order phase transition line betwe
BP III and the isotropic phase.

In the meantime there is no doubt that BP III is a seco
isotropic phase, and the critical point is of the same univ
sality class as the liquid-gas transition@18,19#. Calculations
of the BP III–isotropic transition using a pseudoscalar or
parameter@18,20# have shown how in principle such a crit
cal point could be produced from the Landau–de Gen
Hamiltonian.

To take fluctuations into account, we go beyond me
field theory and apply statistical field theory. The partiti
sum is evaluated approximately with the help of a cumul
expansion. We arrive naturally at a new order parameter,
squareD of the inverse correlation length of the alignme
tensor. It helps to discern two isotropic liquids at hig
chiralities, of which we interpret the strongly correlated o
as BP III, and the weakly correlated one as the stand
isotropic nematic.

The paper is organized as follows: After a short introdu
tion into the theoretical description of the blue phases in S
II, new mean-field results are presented in Sec. III, wh
will help to understand the effects of fluctuations. In Sec.
the cumulant expansion is explained. The relation to the
called Brazovski� method@21# is discussed briefly. In Sec. V
we document the influence of fluctuations on the phase
grams. Sections VI and VII are devoted to the isotro
phase. To obtain evidence for a transition between two
tropic phases, a third-order cumulant expansion has to

FIG. 2. One of the first mean-field phase diagrams of the b
phases~recalculated partial magnification of Fig. 1 of Grebelet al.
@11#!. Diamonds correspond to computed points in the phase
gram, and the solid lines are linear interpolations. Apart from
cholesteric phase and theO5 structure no further phase shows
direct transition to the isotropic phase.

FIG. 3. Sketch of the experimental phase diagram of chiral n
atic liquid crystals;k and t are in arbitrary units.
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employed which we illustrate for a simplified model. In Se
VIII the limitations of the theory are discussed.

II. THEORETICAL MODEL

The orientational order of the molecules in the bl
phases is best described by the symmetric and trace
alignment tensor fieldQ(r ). It can be expanded into spi
tensor modes ofL52 and into plane waves, which yields

Q~r !5(
k

(
m522

2

Qm~k!Mm~ k̂!e2 ik•r. ~1!

k5uku is the modulus ofk, Mm( k̂), m522, . . . ,2 are the
base tensors, andQm(k) is the Fourier amplitude of the
mode (k,m).

The Landau–Ginzburg–de Gennes Hamiltonian of ch
liquid crystals reads in real space@11#,

H5H21H31H4 , ~2!

with

H25
1

2VE d3r ~aQi j Qji 1c1Qi j ,lQi j ,l1c2Qi j ,iQl j ,l

22de i j l QinQln, j !,

H352
b

A24V
E d3r Qi j QjkQki ,

H45
g

24VE d3r ~Qi j Qji !
2,

whereV is the system volume. In reciprocal space the Ham
tonian is written as

H5
1

4 (
k

(
m

H t2mjRkk1jR
2F11

1

6
r~42m2!Gk2J

3mm~k!mm~k!

2
1

2 (
k1 ,k2 ,k3

(
m1 ,m2 ,m3

mm1
~k1!mm2

~k2!mm3
~k3!

3 Tr @Mm1
~ k̂1!Mm2

~ k̂2!Mm3
~ k̂3!#dk11k21k3 ,0

1
1

24 (
k1 ,k2 ,k3 ,k4

(
m1 ,m2 ,m3 ,m4

3 mm1
~k1!mm2

~k2!mm3
~k3!mm4

~k4!dk11k21k31k4 ,0

3 Tr @Mm1
~ k̂1!Mm2

~ k̂2!#Tr @Mm3
~ k̂3!Mm4

~ k̂4!#, ~3!

where we used dimensionless variables by defining

s5b/A6g, mm~k!5Qm~k!/s, H5gs4H, ~4!

a5
gs2

2
t}~T2T0!/T0 , jR5A2c1

s2
, ~5!
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k5
jR

c1
d, r5

c2

c1
. ~6!

The amplitudes differ by a factor ofAN/A24, and the Hamil-
tonian by a factor of 24 compared to Ref.@11#. N is the
number of prongs in the star of wave vectors for a giv
modulus ofk.

III. NEW MEAN-FIELD RESULTS

The mean-field free energy is obtained by substitut
equilibrium valuesm̄m(k) of the amplitudes into Eq.~3!. The
results of Grebelet al. @11# then follow from a minimization
of the free energy with respect to these amplitudes. W
Grebel et al. only kept m52 modes we also checked th
influence of modesmÞ2, to see whether their neglect caus
the deficiencies of the mean-field calculations. Them561
components of the first star are forbidden by selection ru
@11#. The m522 component is strongly depressed co
pared tom52 by choice of a positive handedness. As
simple test we calculated mean-field phase diagrams
m52 components for all stars, and an additionalm50 com-
ponent for the first star only. In the following we use a n
tation similar to Grebelet al. @11#: m0 is the m50 Fourier
component of the first star,m j , j 51,2,4,6, and 8 are them
52 Fourier components of successive stars. For theO2

structure we take only two stars into account,~100! with an
amplitudem̄1, and~110! with m̄2. For theO5 structure there
are three stars:~110!, m̄2 ; (112), m̄6; and~220!, m̄8. For the
O8 structure, finally, there is an additional star~200!, m̄4.

The complete list of mean-field free energies is found
Ref. @22#. Here we present the main results only. The fr
energy of theO2 structure reads

H O25H O2
GHS

1
3

2
@ t1k2~112r/3!r O2

2
#m̄0

21g~mk!m̄0
21

9

4
m̄0

4 ,

~7!

wherer O2 is the lattice constant@11# andg(m̄k) is a positive
definite function of them̄k . It is globally minimized bym̄0
50, sinceg(mk) is always larger than the temperature d
pendent term. The free energy of theO8 structure also pos
sesses cubic contributions inm̄0. For small chiralities and
low temperatures, where BP I is only metastable, we fi
that m̄0Þ0 can occur. However, in the whole range of s
bility of BP I, the free energy is minimized bym̄050. For
the O5 structure, the free energy contains linear terms inm̄0
which consequently cannot vanish and enhance the stab
of the phase. The changes in the phase diagram, howeve
negligibly small. We, therefore, assume that the only r
evant terms are indeed them52 contributions.

We have investigated the behavior of the mean-fi
phase diagram for very high chiralities (k.3, Fig. 4!. The
phase transition line betweenOc/b

8 andO2 has a minimum at
k'5. At the same value ofk a reentrantOd

8 phase arises
which causes theO2 structure to vanish atk'12. In Sec. V
we will show that the reentrantOd

8 phase is an artifact of the
mean-field theory. The disappearance of theO2 structure due
to fluctuations occurs at lower chiralities.
n

g

le

s

s
-

th

-

e

-

d
-

ity
are
l-

d

The O8 structure undergoes an isostructural transit
from Oc

8 (m̄2'm̄4 , m̄6 /m̄2'0.3, m̄8 /m̄2,0.06, m̄2.0,

m̄4.0) to Ob
8 , where the second harmonic is very sm

(m̄4 /m̄2&0.15, m̄2.0, m̄4.0). The reentrantOd
8 phase pos-

sesses a very small first harmonic (m̄2 /um̄4u&0.2, m̄2.0,
m̄4,0).

Chiralities abovek'2 were declared unphysical b
Grebelet al. @11#. We would like to mention, however, tha
the role of the chirality parameterk is not quite clear. The
pitch, which is proportional tok, is known to depend
strongly on temperature@23#, but k is chosen temperatur
independent. In experimental phase diagrams the pitch is
termined for a single temperature only just below the cle
ing point@16#. The relevant quantity is rather the temperatu
independent mole fraction of the chiral compound, and i
not excluded that high chirality values, i.e.,k.3, are physi-
cally relevant.

IV. CUMULANT EXPANSION

A. Application to blue phases

To incorporate fluctuations of the order parameter into
calculations of the phase diagram of the blue phases we
from the statistical definition of the free energy

F52b21ln Z52b21ln E Dm exp~2bH@m#!, ~8!

b51/kBT, which we evaluate with the help of the cumula
expansion. With respect to phase transitions, the cumu
expansion was originally used in the renormalization gro
scheme@24#, and recently applied to block copolymers@25#.

The order parameterm5m̄1m8 is subdivided into an
equilibrium partm̄ and a fluctuating partm8. The path inte-
gration then has to be carried out over all smooth pathsm8.
We rewrite the Hamiltonian as

H @m#5H @m̄#1H̃ @m̄,m8#5FMF @m̄#1H̃ @m̄,m8#, ~9!

whereFMF @m̄# is the mean-field free energy.
The path integral in Eq.~8! cannot be solved analytically

For the fluctuations, therefore, we choose a Gaussian
Hamiltonian

FIG. 4. Mean-field phase diagram of the blue phases fok
<12.
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H 8@m8#5
1

4 (
q

@D1~q2k!2#mq8m2q8 , ~10!

with D, which represents a ‘‘mass term’’ or ‘‘reduced tem
perature’’ @cp. the quadratic part in Eq.~3!# as variational
parameter. In the following we concentrate on fluctuations
the m52 mode and denote the amplitude of the fluctuat
mode (m52,k5q) by mq8 and of the equilibrium part bym̄qi

or m̄ i . The partition function corresponding to Hamiltonia
~10! reads

Z85E Dm8exp~2bH 8@m8# !. ~11!

With Eqs.~10! and ~11! we rewrite Eq.~8! as

F5FMF@m̄#

2b21lnF S E Dm8e2b(H̃[ m̄,m8] 2H 8[m8])e2bH 8[m8] DZ8

Z8
G ,

~12!

which simplifies to

F5H @m̄#2b21ln^e2b(H̃[ m̄,m8] 2H 8[m8])&H 82b21ln Z8.
~13!

All expectation values are now calculated with respect
H 8@m8# indicated by the subscript index. We definedH
5H̃@m̄,m8#2H 8@m8# and expand the second term into
Taylor series. It yields up to third order indH:

ln^e2b(H̃[ m̄,m8] 2H 8[m8])&52b^d H&1
b2

2
~^d H 2&

2^d H&2!2
b3

6
~^d H 3&23^d H&

3^d H 2&12^d H&3!

1O~^d H 4&!. ~14!

All terms of the same order indH are called moments o
cumulants ofdH. In a first-order approximation the free en
ergy then reads

F5FMF@m̄#2b21ln Z81^H̃@m̄,m8#2H 8@m8#&H 8 .
~15!

To arrive at the free energies for different structures
have to calculate the last two terms of Eq.~15! explicitly.
First, we need the definition of the two-particle correlati
function and of the self energy function.

The two-particle correlation function, corresponding
the trial Hamiltonian of Eq.~10!, is given by

^mq8m2q8 &H 85
2b21

D1~q2k!2
5b21x~q!, ~16!

where we have introduced the wave vector dependent
ceptibility x(q) of m̄q @24#. D21/2 is the correlation length o
the alignment tensor field. The integral over the correlat
function,
f
g

o

e

s-

n

1

4 (
q

^mq8m2q8 &H 85
Vb21

4p2 E0

nk q2dq

D1~q2k!2
5S~D!,

~17!

is called the self-energy function. It can be evaluated anal
cally:

S~D!5
Vb21

4p2
kH n2 lnS 11k2/D

11~k2/D!~n21!2D
2

AD

k S 12
k2

D D FarctanS k

AD
D

1arctanS k

AD
~n21!D G J . ~18!

We will comment below about the cutoff radiusnk in Eq.
~17!. Higher-order correlation functions are simplified usin
Wick’s theorem@24#.

Now we present details of the calculation of^dH&H 8 .
The third term of Eq.~15! comes from the quartic invariant
and contains terms of the form

1

6 (
i

~112l i j ,2 i ,2 j !^mqi
8 m2qi

8 &, ~19!

where l i jkl 5Tr @M( k̂ i)M( k̂ j )#Tr @M( k̂k)M( k̂ l)#. The angu-
lar part of the integral can be calculated according to

1

4pE0

2pE
0

p

~112uTr @M2~ q̂!M2~ k̂!#u2!sinududw

5
1

4pE0

2pE
0

pS 112 sin8
u

2D sinududw5
7

5
, ~20!

whereu is the angle betweenk andq. The cubic contribution
of ^dH&H 8 vanishes according to

3m̄0(
i

b i ,2 i ,0̂ mqi
8 m2qi

8 &50 ~21!

with b i jk5Tr @M( k̂ i)M( k̂ j )M( k̂k)#.
The self-energy function follows from the derivative o

Z8 with respect toD:

]Z8

]D
52bZ8S~D!. ~22!

After integration, we obtain

2b21ln Z85E
0

D

S~D8!dD8. ~23!

The final expression for the free energy within the fir
order cumulant expansion reads
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F5FMF @m̄#1E
0

D

S~D8!dD8

1S t2D1
14

15
S~D!1

7

15 (
i

m̄ im̄2 i DS~D!. ~24!

In order to obtain phase diagrams the free energy,
~24!, has to be minimized with respect to the variation
parametersD and m̄. Variation with respect toD leads to a
Dyson type equation

2D1t1
28

15
S~D!1

7

15 (
i

m̄ im̄2 i50, ~25!

which is the determining equation forD. The free energy of
Eq. ~24! can be simplified with the help of Eq.~25!:

F5FMF @m̄#1E
0

D

S~D8!dD82
14

15
S2~D!. ~26!

In Sec. V we will use Eqs.~25! and ~26! to numerically
compute phase diagrams of the blue phases.

B. Connection with the Brazovski� method

Here we would like to clarify the connection between t
cumulant expansion and the Brazovski� method@15,21#. Bra-
zovski� and co-workers calculated the Dyson equation
ordered structures, assuming that

dF

dm̄2qi

5K d H@m̄,m8#

dm̄2qi

L
H 8

. ~27!

The two point vertex function is given by

b21G i ,2 i
(2) 5

d2F

dm̄qi
dm̄2qi

, ~28!

and is proportional to the inverse two point correlation fun
tion. The resulting self-consistent equation represents
Dyson equation for ordered structures.

Applying this method to blue phases, we obtain the f
lowing Dyson equation instead of Eq.~25!:

2D1t16m̄0~b2 j , j ,01b j ,2 j ,0!

1
1

3 (
i

m̄ im̄ i~112l i , j ,2 i ,2 j !1
28

15
S~D!50,

~29!

wherel i jkl andb i jk are defined as in Eqs.~19! and~21!. The
free energy is exactly the same as Eq.~26!. The indexj of
Eq. ~29! corresponds to the equilibrium amplitudem̄ j of the
first star.

It is evident, that the Dyson equation~29! for the isotropic
phase is equivalent to Eq.~25!. For the ordered structures
however, it differs: In Brazovski�’s method the term (1
12l i , j ,2 i ,2 j ) has to be summed over the stark i , and j, as
noted, corresponds to an equilibrium value. Thus, even ifm̄ j
q.
l

r

-
e

-

vanishes for some reason, Eq.~29! still depends onj via the
tensor componentsb2 j , j ,0 andb j ,2 j ,0 , as for example in the
case ofO2. SinceO8 is a subgroup of the former, the fre
energy ofO2 can usually be obtained by setting the amp
tudes of the first and third stars ofO8 to zero. This property,
however, is not reflected by the Dyson equation~29!. In-
stead, sincej belongs to the first star ofO8 the procedure
leads to anO2 structure with fluctuations around a (110
star. In the Dyson equation derived for theO2 structure, on
the other hand, one arrives at fluctuations around the (1
star. Consequently, two different Dyson equations forO2 can
be derived, which is a source of inconsistencies.

Even worse, the linear term proportional tom̄0(k50) pro-
duces an effective linear term in the free energy,

dF

dm̄ i

5
]F

]m̄ i

1
]F

]D

]D

]m̄ i

, ~30!

making the isotropic phase unstable. For the cholest
phase there is anm50 mode withk50; thus, with Eqs.~26!
and ~29!,

dF

dm̄0

5
]FMF

]m̄0

2A6S~D!. ~31!

The condition for the isotropic phase to be stable is that fi
derivative of the free energy with respect to the equilibriu
order parameter vanishes for all equilibrium order para
eters set to zero. Here, however,

dF

dm̄0

52A6S~D!Þ0, ~32!

since the self-energy function is nonzero everywhere. In c
clusion we point out, that Brazovski�’s method is different
from the cumulant expansion even in first order, and yie
misleading results in the case of blue phases.

V. PHASE DIAGRAMS

A. Influence of fluctuations

Apart from temperature and chirality there are two oth
parameters present in the free energy@Eq. ~26!#: the cutoff
radiusn and the energy scale of the fluctuationsb215kBT,
where T is close to the clearing point temperature. Let
introduce the convenient quantitya5b21V/(60p2). First
we will present phase diagrams with fixedn51 and increas-
ing a. Second, we discuss the role of the cutoff radius.

Let us summarize the main deficiencies of the mean fi
phase diagram: The cubic structureO5, that has not been
observed experimentally, appears at the phase transition
tween the cubic phases and the isotropic phase before
other cubic structure can condensate. Hence neitherO2 nor
O8 show a direct phase transition to the isotropic pha
There is no model of the blue fog included in the mean-fi
calculations of Ref.@11#.

In Fig. 5 we show what happens to the mean-field ph
diagram when the fluctuations are turned on weakly. Fr
Eqs. ~26! and ~18! we obtain the mean-field phase diagra
by putting a50, as sketched with solid lines in Fig. 5. O
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increasinga the phase transition line to the isotropic phase
bent downwards, whereas the other transition lines are in
enced less the farther away they are from the clearing po
The structure which is most affected by fluctuations is theO5

structure. In Fig. 5 it can be clearly seen that the range
stability of O5 has shrunk dramatically.

Furthermore, the effect of fluctuations increases with
creasing chiralityk, as can be understood from Eq.~18!: For
high chiralities,D!k2, S(D) increases ask2/AD, as long as
k2/D@n2 (n&5). In the latter case,S(D) will be almost
independent ofD and behave likenk. For small chiralities,
on the other hand,D@k2, S(D) decreases asn2k3/D.

At a*0.075 theO5 structure has disappeared complete
from the phase diagram. In Fig. 6 we plot phase diagrams
further increase ofa. For a50.2 the phase transition line t
the isotropic phase is bent down@see Fig. 6~a!#. For a50.5
the range of stability of the blue phases is very small.O2

disappears for chiralitiesk*2 @see Fig. 6~b!#. Increasinga
further to 0.7,O2 completely disappears from the phase d
gram, and the range of stability forO8 is shifted to even
higher chiralities.

The disappearance of theO2 structure for high chiralities
is a universal feature for the phase diagrams of chi
nematic liquid crystals. In Sec. III we have already seen t
it also happens in the mean-field diagram, though for chir
ties larger than 12. With increasinga the point whereO2

vanishes shifts to smaller chiralities, and the phase trans
line to the isotropic phase is moved to lower temperatu
where it eventually crosses theO8-O2 phase transition line
The phase diagram which agrees best with the experime
one is obtained fora50.2 ~Fig. 7, which is the continuation
of Fig. 6 to an extended range of chiralities!.

B. Cutoff radius

How do the results change when the cutoff radiusnk is
increased? For smallk the self energy integral is propor
tional to an2. Choosingn52, we must dividea by 4 to
obtain results with equal strength of fluctuations. This is
lustrated in Fig. 8, which has to be compared to Fig. 6~a!.
For n53 anda50.03, the phase diagram is very similar
Fig. 8.

FIG. 5. The solid lines of the phase diagram represent the m
field behavior. If fluctuations are included, the transition lin
change, as illustrated by the dashed lines. Note that theO5 phase
has almost vanished from the phase diagram. The strength o
fluctuations is characterized bya50.025, and only the first shel
(n51) is included.
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The qualitative behavior does not change too much w
n is increased up to 3. Forn54 ~Fig. 9! a difference is
already visible. Although there is still noO5 structure
present, the phase transition line rises again fork*2.5, wid-
ening the range of stability ofO2, in disagreement with the
experiment. Forn'10 theO5 structure is back again. Con
sequently, there should be an upper limit for the cutoff
dius.

From physical considerations the necessity for a cutof
evident. The order parameterQ(r ) is an average on a meso
scopic scale of several hundred a˚ngstroms. Assuming a mo
lecular length of about 20 Å, the mesoscopic scale co
sponds to ten times the molecular length. Forn51 only
fluctuations with wave lengths greater than the lattice c
stant are taken into account. Increasingn we add step by step

n-

he

FIG. 6. Phase diagram of the blue phases for different par
etersa andn51. ~a! a50.2. The bold line corresponds to the bo
line of Fig. 10.~b! a50.5.

FIG. 7. Phase diagram of the blue phases fork<10, a50.2,
andn51.
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shorter wavelength fluctuations. Atn510 the mesoscopic
scale, where the order parameter is defined is reached an
theory breaks down.

From Eq. ~18! we recognize that for highern the term
proportional tonk ~being the upper cutoff of the integral!,
which does not depend onD, dominates the self energy func
tion and effectively suppresses long wavelength fluctuatio
The short range fluctuations, on the other hand, should
contain contributions that are not described by a mesosc
theory. In conclusion, we could show that, in a reasona
range for the cutoff radius, the qualitative results remain
changed. For highn short range fluctuations dominate, whic
have no physical meaning.

VI. BEHAVIOR OF THE ISOTROPIC PHASE

In mean-field theory the free energy of the isotropic ph
equals zero, but not when fluctuations are taken into acco
In Fig. 10 the solution of Eq.~25! for the inverse coherenc
lengthAD in the isotropic phase is plotted versus tempe
ture t for different k. Clearly, two different regimes can b
recognized for small chiralities: one at low temperatu
whereAD is small, and another whereAD is about two or-
ders of magnitude larger. The regimes are connec
smoothly. It is a phase behavior, where an order param
changes its value rapidly over the ordering field~the tem-
perature! but behaves continuously in all derivatives. T
smooth transition vanishes for increasingk.

In Sec. IV we have argued thatD21/2 is the correlation
length of the alignment tensor or, respectively, the inve

FIG. 8. Phase diagram of the blue phases fora50.05 and
n52.

FIG. 9. Phase diagram of the blue phases fora50.012 and
n54.
the
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susceptibility. Consequently, in the low-temperature reg
there is a strongly correlated isotropic phase, whereas in
high-temperature region it is weakly correlated. This is a h
of a second isotropic phase, and the high chirality behav
indicates the existence of a critical point. An appropria
thermodynamic order parameter is the inverse susceptibi

It has to be stressed that there is no real phase trans
within the first-order cumulant expansion. It can be sho
@22# that the situation does not change when modes o
thanm52 are added. The corresponding equation must b
least of third order int to provoke a van der Waals like
behavior. For a phase transition the condition]t/]D,0 is
necessary in some interval@D1 ,D2#, implying an instability.

For convenience the line where ordered structures bec
stable is plotted, too, in Fig. 10. On the right side of the bo
line the isotropic phase is stable, whereas on the left it is o
metastable. The isotropic phase obtained in the prece
phase diagrams has therefore always been the ‘‘true’’ wea
correlated isotropic phase.

VII. THIRD-ORDER CUMULANT EXPANSION
IN A SIMPLIFIED MODEL

From the remarks of the last section it is clear, that we c
only obtain an isostructural BP III–isotropic phase transiti
if we extend our theory to a third-order cumulant expansi
Unfortunately, such an expansion is a very tedious work
the Hamiltonian of the blue phases. To check whether ch
systems provide a second isotropic phase and a critical p
we simplified the problem by neglecting the cubic contrib

tion to the Hamiltonian and by setting all base matricesM( k̂)
equal to unity. We then are left with a chiralf4 theory.

Both limitations should not change the qualitative beha
ior of the system, since to first order the cubic term did n
contribute to the fluctuating part of the free energy, and
traces only appeared in angular integrals yielding numer
constants. Both issues will change in a higher order the
but the simplified model should provide a guideline.

For the remaining calculations we start from the Ham
tonian

FIG. 10. Inverse correlation lengthAD vs temperaturet for
chirality k between 0.2 and 3.0. The area on the right side of
bold line is the regime for the stable isotropic phase, and the are
the left side is that for the metastable state. The bold line co
sponds to the bold line of Fig. 6~a!.
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H@f#5
1

2 (
q

@ t1~q2q0!2#fqf2q

1
l

4! (
q11q21q31q450

fq1
fq2

fq3
fq4

, ~33!

wheref̄ andf8 are the equilibrium and fluctuating part o
the order parameter, respectively, and the Gaussian
Hamiltonian reads

H 8@f8#5
1

2 (
q

@D1~q2q0!2#fq8f2q8 . ~34!

q0 is equivalent to the chiralityk.
Using a third-order cumulant expansion the free energy

the isotropic phase then reads

F5E S~D8!dD8

1~ t2D!SS 12blP1b2l2XS1
l2b2

12

z2

S D
2

b

2
~ t2D!2PS 12blP22lb

SX

P D
1

b3

3
~ t2D!3X1

l

2
S2~12lbP1l2b2P2!

1l2b2SS l

3
S2X1P2D

2
l2b

48
~r2lbz124lbSz2!. ~35!

The following abbreviations are used:

S5
1

~2p!2b
E

0

nq0 q2dq

D1~q2q0!2
, ~36!

P5
1

~2p!2b2E0

nq0 q2dq

@D1~q2q0!2#2
52b21

]S

]D
, ~37!

X5
1

~2p!2b3E0

nq0 q2dq

@D1~q2q0!2#3
5

1

2b2

]2S

]D2
, ~38!

and

Gq5^fq8fÀq8 &, ~39!

r5 (
k1k2k3

Gk1
Gk2

Gk3
G2k12k22k3

, ~40!
ial

f

z15 (
k1k2k3k8

Gk1
Gk2

Gk3
Gk8G2k12k22k3

Gk11k22k8 ,

~41!

z25 (
k1k2k3

Gk1

2 Gk2
Gk3

Gk12k22k3
. ~42!

The latter functions must be calculated numerically. A fit
the numerical data obtained by a standard Monte Carlo i
gration yields

r~D,q0!5
b24

27p8
~0.001 15q0

25D210.0071q0
26D2.5

10.111q0
27D320.049q0

28D3.5

10.182q0
29D4!21, ~43!

z15~b262210p211!~0.000 0252q0
26D310.0084q0

28D4

10.023q0
210D510.0425q0

212D6!21, ~44!

z25~b25227p28!~0.002 28q0
25D310.0103q0

26D3.5

10.144q0
27D420.061q0

28D4.510.183q0
29D5!21.

~45!

Equation ~35! has been minimized numerically. The re
sult is plotted in Fig. 11. For small values ofq0 there is a
jump in the correlation length att'0.1 @Figs. 11~a! and
11~b!#. In Fig. 11~b!, which represents a close-up of Fi
11~a!, it can be clearly seen that the slope ofD(t) is approxi-
mately the same and finite at both branches indicating a fi
order phase transition.

For increasingq0 the relative height of the jump de
creases. At the same time the jump shifts toward higher t
peratures@see Fig. 11~c!#. For q0'0.7 the jump disappears
and the correlation length is continuous over the temperat
as illustrated in Fig. 11~d! for q050.8. We have, thus
proven the existence of a critical point in a chiralf4 model.
We note that a small maximum ofD(t) is present att50,
which might be an artifact of the third-order approximatio

Although the Hamiltonian used in this section is simp
fied compared to the Hamiltonian of the blue phases,
predict a qualitatively similar behavior for the blue phas
This prediction is supported by Fig. 12, where we plotD
versus temperature on a linear scale. According to Eq.~16! D
is proportional to the inverse intensity of the scattered lig
for a given chirality and wavelength of the incident ligh
Such measurements have been carried out by Koistinen
Keyes at the BP III–isotropic phase transition@6#. Our pre-
diction calculated within the simplified model reveals a str
ing agreement with the experimental data.
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FIG. 11. Inverse correlation lengthAD vs temperaturet for different q0. ~a! q050.2. ~b! A close-up of~a! reveals a clear jump of the
inverse correlation length att'0.1, indicating a first-order phase transition.~c! q050.6. The jump has decreased compared toq050.2. ~d!
q050.8. The function is now continuous.
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VIII. DISCUSSION

We have shown that the cumulant expansion is an ap
priate method to treat order parameter fluctuations in chi
nematic liquid crystals. The Brazovski� theory used before in
similar systems@15# cannot be applied to blue phase
Within a first-order expansion, it has been proven that
cubic O5 structure is only present for very small values
the clearing-point temperatureTc corresponding to the pa
rametera&0.075.

For high chiralities BP II vanishes, in agreement with t
experiment. This is already the case for mean-field calc
tions atk'12. The role of fluctuations is to shift the poin
whereO2 disappears to lower chiralities.

We have presented various phase diagrams of the
phases under the presence of fluctuations. The phase dia
which agrees best with the experiment has been obtaine
a50.2 @Figs. 6~a! and 7#. The correlation length or, respec
tively, susceptibility of the alignment tensor field shows
smooth transition between two isotropic phases, a highly c
related metastable one, which we interpret as BP III, an
weakly correlated stable one which is the ‘‘true’’ isotrop
phase.

In a simplified model we have investigated isostructu
transitions within the isotropic phase using a chiralf4 theory
and a third-order cumulant expansion. We could prove
existence of a first-order phase transition between two
tropic phases which ends at a critical point when the chira
is increased. The appropriate physical quantity to be use
an order parameter is the susceptibility of the alignment t
o-
l-
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r-
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sor field. It leads to the unique situation that the fluctuatio
of the order parameters of the ordered system act as o
parameter of the disordered system. Fluctuations of the
order parameter at the critical point have to be described
methods similar to these as given in Ref.@18#.

One serious limitation is the use of a Gaussian tr
Hamiltonian, since all odd order correlation functions van
a priori. It cannot be estimated how strongly it influences t
results. On the other hand, there is no method known to d
which can handle such expressions correctly, apart fr
Monte Carlo path integrations.

Another limitation is the neglection of modesmÞ2. We
are sure, however, that the results are not seriously touc

FIG. 12. Inverse intensityD ~on a linear scale! vs temperaturet
for q050.4. This allows for direct comparison with the experime
tal light scattering data at the isotropic–BP III transition@6#.
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because we have shown the dominance of them52 modes
in the mean field. The strongest fluctuating modes sho
also be them52 modes since they can be treated as per
bations of the equilibrium modes. For the behavior of t
isotropic phase nothing new has to be expected when ext
ing the first-order theory to other modes.

For increasing chirality the order of appearance of
cubic phases is still firstO2, thenO8, in disagreement with
experiment. It may be resolved by use of higher-order
t.
.

k,

gs

v.
t,
,

. A
ld
r-
e
d-

e
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proximations which possibly enhance the fluctuations
small chiralities.
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