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Influence of fluctuations on the phase diagram of chiral nematic liquid crystals
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In a recent papdiPhys. Rev. Lett81, 1457(1998], we demonstrated that the phase diagram of the liquid
crystalline blue phases, as calculated by means of Landau—de Gennes theory, displays serious deficiencies,
which can only be removed if fluctuations are taken into account within statistical field theory. Here we present
details of the calculations. The influence of fluctuations is treated self-consistently within a first order cumulant
expansion. The squatke of the inverse correlation length of the alignment tensor field is introduced as an order
parameter. In a simplified model two phases of differingppear at high chiralities, which are identified as the
isotropic phase and the isostructural blue fog. The relationship between the cumulant expansion and the
Brazovski method is illuminated.

PACS numbegs): 64.70.Md, 05.40-a, 61.30.Cz

[. INTRODUCTION the best phase diagram was obtained by Grebell. (see

Blue phase$1] belong to the liquid crystalline state, but Fig. 1) [11]. Using a Ginzburg—Landau—de Gennes free en-
they display features of solids much more than any otheergy, they could explain the structure of the body-centered-
liquid crystal. The centers of mass of the molecules do nogubic blue phase | with space gro@’ (14,32) and the
exhibit positional order. In the cubic blue phas@P’s),  simple cubic blue phase Il with space gro@3 (P4,32).
however, the molecular axes align to form a complex longNear the phase transition to the isotropic phase, instead of
range orientational pattern which is periodic along all threeBP Il they predicted a second body centered structure with
spatial directions. There are two cubic structufB® | and  space grou® (1432), which always condenses bef@é
BP Il) of nonsymmorphic space grou®? (simple cubig andO?® (see Fig. 2 Furthermore, they did not reproduce the
and 08 (body-centered-cubjc Their lattice constants are experimentally well established disappearance of the BP I
about 500 nm, and they scatter light selectively in the visiblgfor high chiralities.
spectrum. Defects, like dislocations, are directly observable Many extensions of the mean-field theory were presented,
in the microscopd?2]. The range of existence of the blue taking regard of higher order teri2] and secondary order
phases is a few K. Thus they are thermodynamic phaseparameterg13] in the free energy. However, the inconsis-
which are very difficult to synthesize and to stabilize. Theytencies of the phase diagrams could not be resolved com-
are squeezed in between the high-temperature isotropic ligpletely. Already at the early stage it was noted, that “ne-
uid and the low-temperature cholesteric phase. Recently, oglecting the fluctuations ... may be a bad approximation”
the low-temperature side smectic and twist-grain boundary14]. On the other hand, it was claimed that “fluctuations
phases were also observfg], and experimental evidence almost undoubtedly are irrelevant at phase transitions of
was provided for “smectic blue phase$4]. The periodic ~Wweak crystallization into blue phase$15].
order of BP Il is melting directly into the isotropic phase or, Experimentally, the situation is quite clear now. The uni-
at high chiralities, into a third blue phagBP Ill). Due to its  Versality of the phase diagrams as sketched in Fig. 3 and first
amorphous appearance, BP Ill is called “blue fog.” Only documented by Yang and CrooKgr6], has been confirmed
four years ago, it was established as an isotropic phas@any times. It seems to apply even to discotic systgtiig
[5—7]. Unlike the cubic blue phases, its orientational order isVery recent measurements of specific heat, rotatory power,
correlated only over a few pitches of the cholesteric phaseand light scatterind5-7] revealed evidence of a critical
All three blue phases are viscoelastic materials with finite

shear modulus at zero frequency. The modulus continuously 10

approaches zero in BP lll, when it is heated toward the iso- 0’

tropic liquid [8]. Since the cubic blue phases break the con- = 5 Iso

tinuous translational symmetry of the isotropic liquid, they Ei o2
exhibit hydrodynamic Goldstone modes equivalent to acous- g 0

tic phonons in crystals. In Ref9] it was demonstrated that g

they can be viewed as a pure displacement of the local align- £ ; Ch o:

ment tensor. The properties of these displacement modes and

their appearance in light scattering experiments were thor-

oughly studied in Ref[10]. -10
Stable structures and phase diagrams were primarily cal-

culated by mean-field theories. Although confirming roughly

the phase sequence, the mean-field calculations disagree inFIG. 1. Phase diagram recalculated from Landau—Ginzburg—de

many aspects with the experimental results. Until recentlyGennes theory of Grebet al. [11].
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employed which we illustrate for a simplified model. In Sec.
VIII the limitations of the theory are discussed.

\ g

E ‘ Iso 5 IIl. THEORETICAL MODEL
% .
é 3 o? The orientational order of the molecules in the blue
2, \\ phases is best described by the symmetric and traceless
Ch alignment tensor field)(r). It can be expanded into spin
1 ’ tensor modes of =2 and into plane waves, which yields
0.2 0.4 0.6 0.8 1.0
chirality & 2 R )
_ _ _ AN=2 > Qu(kMy(ke ™. 1)
FIG. 2. One of the first mean-field phase diagrams of the blue ki m=-2

phasegrecalculated partial magnification of Fig. 1 of Grele¢lal.

[11]). Diamonds correspond to computed points in the phase diak=|k| is the modulus ok, Mm(k) m=-2,...,2 are the

gram, and the solid lines are linear interpolations. Apart from thebase tensors, an®,,(k) is the Fourier amphtude of the

cholesteric phase and th@® structure no further phase shows a mode k,m).

direct transition to the isotropic phase. The Landau—-Ginzburg—de Gennes Hamiltonian of chiral
liquid crystals reads in real spaf#l],

point terminating the first-order phase transition line between

BP 11l and the isotropic phase.

In the meantime there is no doubt that BP IlI is a secondyith
isotropic phase, and the critical point is of the same univer-
sality class as the liquid-gas transitiph8,19. Calculations 3
of the BP lll—isotropic transition using a pseudoscalar order H2:W d*r (aQy; Qji +C1Qij 1 Qij 1 +€2Qj,i Qyj s
parametef18,20 have shown how in principle such a criti-

H:H2+H3+H4, (2)

cal point could be produced from the Landau—de Gennes —2dé€j1 QinQin )
Hamiltonian.

To take fluctuations into account, we go beyond mean- Ho— — f 4 ;10 Qx
field theory and apply statistical field theory. The partition 3 J24v kK

sum is evaluated approximately with the help of a cumulant
expansion. We arrive naturally at a new order parameter, the
squareA of the inverse correlation length of the alignment Hy= 24\/[ d® r(QIJQJI) '
tensor. It helps to discern two isotropic liquids at high
chiralities, of which we interpret the strongly correlated onewhereV is the system volume. In reciprocal space the Hamil-
as BP lll, and the weakly correlated one as the standartbnian is written as
isotropic nematic.

The paper is organized as follows: After a short introduc-
tion into the theoretical description of the blue phases in Sec.
II, new mean-field results are presented in Sec. Ill, which

1 1
H=7, Zk > [t—ngKkJrgg 1+6p(4—m2)}k2]

will help to understand the effects of fluctuations. In Sec. IV X pm(K) (k)
the cumulant expansion is explained. The relation to the so- 1
called Brazovskimethod[21] is discussed briefly. In Sec. V. -5 > 2 (K0 iy (K2) s, (K3)
we document the influence of fluctuations on the phase dia- ky ko kg mg,my,mg
grams. Sections VI and VII are devoted to the isotropic A A ~
phase. To obtain evidence for a transition between two iso- X T [Min, (K1) M, (k2)Mim,(K3) 10k, + k45,0
tropic phases, a third-order cumulant expansion has to be 1
+ —_
I 24 k) K k3.kg my my.mg,m,
80
> BP 11
o critical
El X pm, (Ky) pem,(K2) som,(K3) tem, (Ka) Ok 4k, + kgt k0
©
3 A A - -
E X T [Myn, (K1) My, (R2) ITY [Mpy (R3)Mpn, (K21, (3)
where we used dimensionless variables by defining
s=BIN6Y, um(K)=Qu(K)is, H=ys'H, (4
chirality &
. . . '}/SZ 2Cl
FIG. 3. Sketch of the experimental phase diagram of chiral nem- a= 7toc(T_ To)To, é&R=\/— (5)

atic liquid crystals;x andt are in arbitrary units.



PRE 61

_tR

K d,
C1

Cz
p=

Ci’

(6)

The amplitudes differ by a factor afN/+/24, and the Hamil-
tonian by a factor of 24 compared to R¢lL1l]. N is the

number of prongs in the star of wave vectors for a given

modulus ofk.

Ill. NEW MEAN-FIELD RESULTS

The mean-field free energy is obtained by substituting

equilibrium valuesu (k) of the amplitudes into Eq3). The
results of Grebeét al.[11] then follow from a minimization
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of the free energy with respect to these amplitudes. While

Grebel et al. only kept m=2 modes we also checked the

FIG. 4. Mean-field phase diagram of the blue phasesor

influence of modem+ 2, to see whether their neglect causes~

the deficiencies of the mean-field calculations. The =1

components of the first star are forbidden by selection rules
[11]. The m=—2 component is strongly depressed com-

The Of structure undergoes an isostructural transition
from 0% (uo~ms, me/ur~0.3, ug/p,<0.06, w,>0,

pared tom=2 by choice of a positive handedness. As au4>0) to Op, where the second harmonic is very small
simple test we calculated mean-field phase diagrams witQ,,/u,=<0.15, u,>0, u,>0). The reentran®S phase pos-

m=2 components for all stars, and an additiomea+ 0 com-
ponent for the first star only. In the following we use a no-
tation similar to Grebekt al. [11]: uq is them=0 Fourier
component of the first stay;, j=1,2,4,6, and 8 are the
=2 Fourier components of successive stars. For @fe
structure we take only two stars into accouii0) with an
amplitudew,, and(110) with u,. For theO® structure there
are three starg110), w,; (112), ug; and(220), ng. For the
08 structure, finally, there is an additional st&00), ..

sesses a very small first harmonig /|4 <0.2, u,>0,

14<0).

Chiralities above k~2 were declared unphysical by
Grebelet al. [11]. We would like to mention, however, that
the role of the chirality parameter is not quite clear. The
pitch, which is proportional tok, is known to depend
strongly on temperaturf23], but « is chosen temperature
independent. In experimental phase diagrams the pitch is de-
termined for a single temperature only just below the clear-

The complete list of mean-field free energies is found ining point[16]. The relevant quantity is rather the temperature
Ref. [22]. Here we present the main results only. The freeindependent mole fraction of the chiral compound, and it is

energy of theD? structure reads

GHS

3 9_
Hor=H gz +5[t+r*(1+ 2p3)r 2, 3+ g(/_Lk);g-f—Z,u,é,

()

wherer 2 is the lattice constaritL1] andg( ) is a positive

definite function of theu, . It is globally minimized by,
=0, sinceg(uy) is always larger than the temperature de-
pendent term. The free energy of tB¢ structure also pos-

sesses cubic contributions jmy. For small chiralities and

low temperatures, where BP | is only metastable, we find

that anéo can occur. However, in the whole range of sta-
bility of BP 1, the free energy is minimized by,=0. For
the O°® structure, the free energy contains linear termgn

not excluded that high chirality values, i.&>3, are physi-
cally relevant.

IV. CUMULANT EXPANSION
A. Application to blue phases

To incorporate fluctuations of the order parameter into the
calculations of the phase diagram of the blue phases we start
from the statistical definition of the free energy

F:—ﬂ_”nZ:—B_l'nJ Duexp—BH[u]), (8)

B=1/kgT, which we evaluate with the help of the cumulant
expansion. With respect to phase transitions, the cumulant
expansion was originally used in the renormalization group

which consequently cannot vanish and enhance the stabiligcheme24], and recently applied to block copolymé@5).
of the phase. The changes in the phase diagram, however, areThe order parametep=pu+ ' is subdivided into an

negligibly small. We, therefore, assume that the only rel-equilibrium partx and a fluctuating park’. The path inte-

evant terms are indeed time=2 contributions.

gration then has to be carried out over all smooth paths

We have investigated the behavior of the mean-fieldye rewrite the Hamiltonian as

phase diagram for very high chiralitiex ¢ 3, Fig. 4. The
phase transition line betwedf,, andO? has a minimum at
k~5. At the same value ok a reentrantO§ phase arises,

HIpl=Hpl+H [ pop' 1=FF [ ]+ H [ n'] (9)

which causes th@? structure to vanish at~12. In Sec. V. whereFMF[ 1] is the mean-field free energy.

we will show that the reentraf@® phase is an artifact of the
mean-field theory. The disappearance of@festructure due
to fluctuations occurs at lower chiralities.

The path integral in Eq8) cannot be solved analytically.
For the fluctuations, therefore, we choose a Gaussian trial
Hamiltonian
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VB~! (e g*dq
472 Jo A+(q—k)?

=3(4),
17

1
WIS @0ty 00 TS upl -

with A, which represents a “mass term” or “reduced tem-

perature” [cp. the quadratic part in Eq3)] as variational . lled th i ¢ ion. | b | d Vi
parameter. In the following we concentrate on fluctuations Ofcsaﬁ;ar ed the seli-energy function. It can be evaluated analyti-

them=2 mode and denote the amplitude of the fluctuating
mode (n=2k=q) by ,u(; and of the equilibrium part b);uqi

— . . . oo Bt 1+ k%A
or u;. The partition function corresponding to Hamiltonian 2 (A)= > k) n—In 5 5
(10) reads 4 1+ (k“/A)(n—1)
7= f Du’ Tu 11 B et -
= | Du'exp(=BH '[u']). (11 ———|1-7 | arcta Y
With Egs.(10) and(11) we rewrite Eq.(8) as p
— +arctan ——=(n—1 . 18
F=F"u] r(JK( ))H 1o

We will comment below about the cutoff radiwmsc in Eq.
(17). Higher-order correlation functions are simplified using
Wick’s theorem[24].

Now we present details of the calculation @FH) .
which simplifies to The third term of Eq(15) comes from the quartic invariant,
and contains terms of the form

—B 7 tn

( f D' e BHluu1=H'1u') g=BH ’[u’])_

F=H [;]—B_lln(e_ﬁ(ﬂ[;'“’]_H Dy, —p Unz'.
(13
All expectation values are now calculated with respect to
H'[n'] indicated by the subscript index. We defid@{
=H[p,u"]=H'[n'] and expand the second term into awhere A, =Tr[M(k;)M(k;) I Tr[M(k)M(k;)]. The angu-
Taylor series. It yields up to third order i§f: lar part of the integral can be calculated according to

1
gzi (142N~ - kg ) (19

(AT T T, BZ
BHIp.p' T-H ' Dy = — — 2 1 T (7 ~ A

ﬁ3
—(6H)?)— ——({(H>—-3(6H 1 (2n (= 0 7
(o) 6 < )~ 3(5H) == J 1+2sif=|sinfddde= =, (20
4 0 0 2 5
X(8H2)+2(6H)®)
+O((8HY). (14)  Whered is the angle betweek andg. The cubic contribution

of (6H)4+ vanishes according to
All terms of the same order i@H are called moments or

cumulants of6H. In a first-order approximation the free en- _
ergy then reads 3,(Lo§i: ﬁi,,iyo(/,téiﬂ’,q):O (21
F=FMu]= BN Z" + (' 1= H [ D o
(15 with Bij=Tr[M(k)M(k))M(k)].
To arrive at the free energies for different structures we_ 1 1€ Self-energy function follows from the derivative of

have to calculate the last two terms of H45) explicitly. ~ £ With respect tA:
First, we need the definition of the two-particle correlation

function and of the self energy function. az' B ,
The two-particle correlation function, corresponding to A - BZ 2(4). (22)
the trial Hamiltonian of Eq(10), is given by
2571 After integration, we obtain
Ml =————=B""x(q), 16
<1U’q1u' q>H A+(q—:<)2 B x(q) (16)

A
_ — B Un z'=f S(A")dA’. (23
where we have introduced the wave vector dependent sus- 0
ceptibility x(q) of uq [24]. A~Y2is the correlation length of
the alignment tensor field. The integral over the correlation The final expression for the free energy within the first-
function, order cumulant expansion reads
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_ A vanishes for some reason, Eg9) still depends on via the
F:FMF[MHJ 3(A")dA’ tensor componentg_; ; pandg; _; o, as for example in the
0 case of0?. SinceO? is a subgroup of the former, the free
14 7 - energy ofO? can usually be obtained by setting the ampli-
ToA+ (M)t > MiMi)E(A)- (24 tudes of the first and third stars 68 to zero. This property,
' however, is not reflected by the Dyson equati@9). In-
In order to obtain phase diagrams the free energy, EcStead, sincd belongs to the first star dd® the procedure
(24), has to be minimized with respect to the variationall€ads to anO? structure with fluctuations around a (110)

parameters\ and;. Variation with respect ta\ leads to a star. In the Dyson equa_tion derived for 02 structure, on
Dyson type equation the other hand, one arrives at fluctuations around the (100)

star. Consequently, two different Dyson equationsddrcan
28 7 o be derived, which is a source of inconsistencies.

—A+T+ (M) EI mipm—i=0, (29) Even worse, the linear term proportionalgg(k = 0) pro-

duces an effective linear term in the free energy,

+

which is the determining equation far. The free energy of
Eq. (24) can be simplified with the help of E¢25): d_E:i+f i (30)
dui  dui 98 au;’
_EMF[ - 4 ' , 14 2
F=F ['“]“Lfo 2(A")dA _1_5E (). (26) making the isotropic phase unstable. For the cholesteric
phase there is am=0 mode withk= 0; thus, with Eqs(26)
In Sec. V we will use Eqs(25) and (26) to numerically —and(29),
compute phase diagrams of the blue phases.
dF  gFMF
—=———63(A). (31)

B. Connection with the Brazovski method d;o o

Here we would like to clarify the connection between theThe condition for the isotropic phase to be stable is that first
cumulant expansion and the Brazovskiethod[15,21]. Bra- e pic p e
derivative of the free energy with respect to the equilibrium

zovski and co-workers calculated the Dyson equation fororder arameter vanishes for all equilibrium order param-
ordered structures, assuming that P q P

eters set to zero. Here, however,

SF [ SHp.u']
= :< S : @7 I Bsa)+0, (32
/-L_qi M_qi H! dMO
The two point vertex function is given by since the self-energy function is nonzero everywhere. In con-
clusion we point out, that Brazov$ls method is different
1p@) 5°F from the cumulant expansion even in first order, and yields
B lEi= S S (28) misleading results in the case of blue phases.
Mg OK —q;
and is proportional to the inverse two point correlation func- V. PHASE DIAGRAMS
tion. The resulting self-consistent equation represents the A. Influence of fluctuations

Dyson equation for ordered structures.
Applying this method to blue phases, we obtain the fol-
lowing Dyson equation instead of E®5):

Apart from temperature and chirality there are two other
parameters present in the free enefgy. (26)]: the cutoff
radiusn and the energy scale of the fluctuatigfs'=kgT,

— A+ 7+ 6;0(,8,,-,1,0+ Bi o yvhereT is close to th_e clearing_ point_tlemperatzure. _Let us
introduce the convenient quantity= 8" *V/(607“). First
1 — 28 we will present phase diagrams with fixae-1 and increas-
t3 Z piki(LH 2N i) T 722 (A) =0, ing «. Second, we discuss the role of the cutoff radius.
Let us summarize the main deficiencies of the mean field
(29 phase diagram: The cubic structu®®, that has not been
) ) observed experimentally, appears at the phase transition be-
wherej; andp; are defined as in Eq€l9) and(21). The  yeen the chic phase:}s/ anlodp the isotropig phase before any
free energy is exactly the same as E26). The indexj of e cupic structure can condensate. Hence net@fenor

Eq. (29) corresponds to the equilibrium amplituge of the 08 show a direct phase transition to the isotropic phase.

first star. There is no model of the blue fog included in the mean-field
Itis evident, that the Dyson equati¢®9) for the isotropic  calculations of Ref[11].

phase is equivalent to E@25). For the ordered structures, In Fig. 5 we show what happens to the mean-field phase

however, it differs: In Brazovsks method the term (1 diagram when the fluctuations are turned on weakly. From

+2\;j,—i,—j) has to be summed over the stqr, andj, as  Egs.(26) and (18) we obtain the mean-field phase diagram

noted, corresponds to an equilibrium value. Thus, eveT] if by putting@=0, as sketched with solid lines in Fig. 5. On
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FIG. 5. The solid lines of the phase diagram represent the mean- y T "
field behavior. If fluctuations are included, the transition lines 0o | o?
change, as illustrated by the dashed lines. Note thaOth@hase Iso
has almost vanished from the phase diagram. The strength of the
fluctuations is characterized hy=0.025, and only the first shell

(n=1) is included. Ch

temperature ¢
|
ot

increasinge the phase transition line to the isotropic phase is
bent downwards, whereas the other transition lines are influ-
enced less the farther away they are from the clearing point.
The structure which is most affected by fluctuations is@e
structure. In Fig. 5 it can be clearly seen that the range of o 05 1 15 2 25 3

stability of O% has shrunk dramatically. chirality «

Furtherm.ore., the effect of fluctuations increases with in- FIG. 6. Phase diagram of the blue phases for different param-
creasing chiralityc, as can be understood from H38): FOr  gtersy andn=1. (a) a=0.2. The bold line corresponds to the bold
high chiralities A< «?, 2(A) increases ag?/\/A, aslong as |ine of Fig. 10.(b) a=0.5.
k’lA>n? (n=<5). In the latter case3 (A) will be almost
independent oA and behave likaenx. For small chiralities, The qualitative behavior does not change too much when
on the other handA> «?, 3(A) decreases as’«*/A. n is increased up to 3. Fan=4 (Fig. 9 a difference is

At @=0.075 theO® structure has disappeared completelyalready visible. Although there is still n®° structure
from the phase diagram. In Fig. 6 we plot phase diagrams fopresent, the phase transition line rises againer2.5, wid-
further increase o&. For «=0.2 the phase transition line to ening the range of stability dd?, in disagreement with the
the isotropic phase is bent dosee Fig. 6]. For@=0.5  experiment. Fon~10 theO® structure is back again. Con-
the range of stability of the blue phases is very sm@fl.  sequently, there should be an upper limit for the cutoff ra-
disappears for chiralitieg=2 [see Fig. @)]. Increasinga dius.
further to 0.7,0% completely disappears from the phase dia- From physical considerations the necessity for a cutoff is
gram, and the range of stability f@®? is shifted to even evident. The order parameté)(r) is an average on a meso-
higher chiralities. scopic scale of several hundrédgstroms. Assuming a mo-

The disappearance of ti@? structure for high chiralities lecular length of about 20 A, the mesoscopic scale corre-
is a universal feature for the phase diagrams of chiralsponds to ten times the molecular length. Fe:1 only
nematic liquid crystals. In Sec. Ill we have already seen thafluctuations with wave lengths greater than the lattice con-

it also happens in the mean-field diagram, though for chiralistant are taken into account. Increasinge add step by step
ties larger than 12. With increasing the point whereO?

vanishes shifts to smaller chiralities, and the phase transition
line to the isotropic phase is moved to lower temperatures, U
where it eventually crosses ti@°-O? phase transition line.

1 o)

The phase diagram which agrees best with the experimental P
one is obtained forr=0.2 (Fig. 7, which is the continuation £ 50 ¢
of Fig. 6 to an extended range of chiralities g
g
B. Cutoff radius “—-100 |

How do the results change when the cutoff radiusis
increased? For smakl the self energy integral is propor- 150
tional to an?. Choosingn=2, we must dividea by 4 to 0
obtain results with equal strength of fluctuations. This is il-
lustrated in Fig. 8, which has to be compared to Fi@).6
Forn=3 anda=0.03, the phase diagram is very similar to  FIG. 7. Phase diagram of the blue phases#st10, «=0.2,
Fig. 8. andn=1.

2 4 6 8 10
chirality &
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FIG. 8. Phase diagram of the blue phases dor0.05 and FIG. 10. Inverse correlation lengtl/A vs temperature for
n=2. chirality « between 0.2 and 3.0. The area on the right side of the
bold line is the regime for the stable isotropic phase, and the area on
shorter wavelength fluctuations. At=10 the mesoscopic the left side is that for the metastable state. The bold line corre-
scale, where the order parameter is defined is reached and thgonds to the bold line of Fig.(8).
theory breaks down.

Fro”? qu'(lg) Wg r_ecog:]nize that for Pfig?er:]th_e terml susceptibility. Consequently, in the low-temperature region
proportional ton« (being the upper cutoff of the integjal there is a strongly correlated isotropic phase, whereas in the

V.Vh'Ch does not depend ak, dominates the self energy f“r?c' high-temperature region it is weakly correlated. This is a hint
tion and effectively suppresses long wavelength fluctuations.

The short range fluctuations, on the other hand, should als(())f a second isotr_opic phase, anpl_ the high chirality beha_\vior
contain contributions that are not described by a mesoscopfﬁd'Cates the _eX|stence of a cr|t_|ca| p(_)lnt. An approprlg_te
theory. In conclusion, we could show that, in a reasonabld ermodynamic order parameter 'S_the inverse suscept|b|_lr_[y.
range for the cutoff radius, the qualitative results remain un- !t has to be stressed that there is no real phase transition
changed. For high short range fluctuations dominate, which within the first-order cumulant expansion. It can be shown

have no physical meaning. [22] that the situation does not change when modes other
thanm=2 are added. The corresponding equation must be at
V1. BEHAVIOR OF THE ISOTROPIC PHASE least of third order int to provoke a van der Waals like

_ _ _ behavior. For a phase transition the conditi@ihidA <O is
In mean-field theory the free energy of the isotropic phasgecessary in some internvigh;,A,], implying an instability.

In Fig. 10 the solution of Eq(25) for the inverse coherence siaple is plotted, too, in Fig. 10. On the right side of the bold
length VA in the isotropic phase is plotted versus temperaiine the isotropic phase is stable, whereas on the left it is only
turet for different x. Clearly, two different regimes can be metastable. The isotropic phase obtained in the preceding

recognized for small chiralities: one at low temperaturesphase diagrams has therefore always been the “true” weakly
where A is small, and another wheréA is about two or-  .orelated isotropic phase.

ders of magnitude larger. The regimes are connected
smoothly. It is a phase behavior, where an order parameter

changes its value rapidly over the c_ererlng f!eéihg tem- VII. THIRD-ORDER CUMULANT EXPANSION
peraturg¢ but behaves continuously in all derivatives. The IN A SIMPLIFIED MODEL

smooth transition vanishes for increasirg

In Sec. IV we have argued that~ ' is the correlation From the remarks of the last section it is clear, that we can
length of the alignment tensor or, respectively, the inversgnly obtain an isostructural BP Ili—isotropic phase transition

if we extend our theory to a third-order cumulant expansion.
"o ' Unfortunately, such an expansion is a very tedious work for
0 : the Hamiltonian of the blue phases. To check whether chiral
systems provide a second isotropic phase and a critical point,
we simplified the problem by neglecting the cubic contribu-

5 Ch tion to the Hamiltonian and by setting all base matriv&&)

- 1 equal to unity. We then are left with a chira!* theory.
(05 Both limitations should not change the qualitative behav-
ior of the system, since to first order the cubic term did not
10 . . . . . contribute to the fluctu_ating part _of the free_ energy, and _the
0 05 1 15 9 25 3 traces only appe_ared in qngular mte_grals _yleldlng numerical
chirality x constants. Bq'gh issues will change ina h|ghgr qrder theory,

but the simplified model should provide a guideline.
FIG. 9. Phase diagram of the blue phases det0.012 and For the remaining calculations we start from the Hamil-

n=4. tonian

temperature ¢
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1 2 —
H[$]=5 ; [t+(q—do)*]hed—q f= k2k . G188 GGt ik Gyt
11213
\ (42)
+ , 33
4! Q1+Q2+§q;°.+Q4=O ¢q1¢q2¢q3¢q4 33
Whereg and ¢’ are the equilib'rium and fluctuating pgrt of' L= 2 GElekZGkSGk17k27k3' (42)
the order parameter, respectively, and the Gaussian trial kikoks

Hamiltonian reads
The latter functions must be calculated numerically. A fit to

R & ot the numerical data obtained by a standard Monte Carlo inte-
H[#'1=5 2 [A+(A- 00" 1dg¢'q- (34 gration yields
Jo is equivalent to the chirality.
Using a third-order cumulant expansion the free energy of —4
the isotropic phase then reads p(A,qo)= 57 5(0.001 1%], °A%+0.0071., °A?S
T
—7TA3_ —84A35
szz(A')dA' +0.111, 'A%—0.049y, °A
+0.1827,°A% 71, (43
2 2 NB% ¢
+(t—A)X| 1—BAIT+ BNXS + 2 S

B £1=(B~°27"%7~*)(0.000 0252, °A°+0.00841; °A*

2

3 A
+ %(t—A)3X+§22(1—)\BH+)\Z,BZHZ)

3 X
(t—A)ZH( 1—,8)\11—2)\,8—)
I +0.023), 1°A5+0.0425), 12A%) 71, (44)

{o=(B%27 "7 8)(0.002 28|, °A°+0.0103), °A3®

A
2025 | D52 2
AP 2(32 X+ +0.144, 'A%~ 0.061g, 8A*5+0.183y, °A%) L.
\2B (45
~ g (PTABL—ANBEL). (35

Equation (35) has been minimized numerically. The re-
The following abbreviations are used: sult is plotted in Fig. 11. For small values qgf there is a
jump in the correlation length at~0.1 [Figs. 11a) and

11(b)]. In Fig. 11(b), which represents a close-up of Fig.

1 no  g2dq 11(a), it can be clearly seen that the slopeXq(t) is approxi-
3= 5 f 5 (36)  mately the same and finite at both branches indicating a first-
(2m)°BJo A+(g—qo) order phase transition.

For increasingq, the relative height of the jump de-
creases. At the same time the jump shifts toward higher tem-
1 ndo g2dq _, 0% peraturedsee Fig. 1{c)]. For qo~0.7 the jump disappears,
H:(Z’]T)ZB2J0 [A+(q—qo)2]2 =-B A’ (37) and the correlation length is continuous over the temperature,
497G as illustrated in Fig. 1) for gy=0.8. We have, thus,
proven the existence of a critical point in a chiegt model.
5 5 We note that a small maximum a(t) is present at=0,
X 1 f”qo q-dq :i 2 39) which might be an artifact of the third-order approximation.
(2m?2p3lo [A+(q—qp)?]® 282 9A?’ Although the Hamiltonian used in this section is simpli-
fied compared to the Hamiltonian of the blue phases, we
and predict a qualitatively similar behavior for the blue phases.
This prediction is supported by Fig. 12, where we plot
versus temperature on a linear scale. According to(E).A
Gy=(dyb ), (39) is propqrtional to _the inverse intensity of the 'scgttered' light
for a given chirality and wavelength of the incident light.
Such measurements have been carried out by Koistinen and
Keyes at the BP lll-isotropic phase transitid]. Our pre-
p= 2 G Gr.Gr.G k. —k—kor (40) diction calculated within the simplified model reveals a strik-
kikgkg 1 2 % b T2 ing agreement with the experimental data.
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FIG. 11. Inverse correlation lengtifid vs temperature for differentqy. (8) qp=0.2. (b) A close-up of(a) reveals a clear jump of the
inverse correlation length at=0.1, indicating a first-order phase transiti¢o. go=0.6. The jump has decreased comparedgs 0.2. (d)
0o=0.8. The function is now continuous.

VIII. DISCUSSION sor field. It leads to the unique situation that the fluctuations

We have shown that the cumulant expansion is an approqf the order parameters of the ordered system act as order
priate method to treat order parameter fluctuations in Chiralparameter of the dlsorder.e.d systc_em. Fluctuations of t_he new
nematic liquid crystals. The Brazovskheory used before in order parameter at the crmcallpom.t have to be described by
similar systems[15] éannot be applied to blue phases. methods S|m|Iar t_o t_hege as given in REig]. . :
Within a first-order expansion, it has been proven that th Or_1e serious limitation is the use c.)f a Gal.JSSIan trlal

.5 . ' eI‘-|am|Iton|an, since all odd order correlation functions vanish
cubic O structure is only present for very small values of

the clearind-point temoeratur . nding to th ~ apriori. It cannot be estimated how strongly it influences the
rar?gtgsa<% %%5 emperaturg; correspo 9 1o the Pa- raqults. On the other hand, there is no method known to date,

; S . . . which can handle such expressions correctly, apart from
For high chiralities BP Il vanishes, in agreement with the - eXp Y. ap
: - i Monte Carlo path integrations.
experiment. This is already the case for mean-field calcula- Another limitation is the neglection of modes#2. We

tions a";”.lz- The role of fluctugnqr}s Is to shift the point are sure, however, that the results are not seriously touched,
whereO~ disappears to lower chiralities.

We have presented various phase diagrams of the blue 8
phases under the presence of fluctuations. The phase diagram
which agrees best with the experiment has been obtained for =
a=0.2[Figs. §a) and 7. The correlation length or, respec- I
tively, susceptibility of the alignment tensor field shows a
smooth transition between two isotropic phases, a highly cor-

inverse intensity A
S

Fa
related metastable one, which we interpret as BP Ill, and a ;"”
weakly correlated stable one which is the “true” isotropic 2 /
phase.
In a simplified model we have investigated isostructural 0 e
transitions within the isotropic phase using a chipéltheory 9 1 0 1 9

and a third-order cumulant expansion. We could prove the
existence of a first-order phase transition between two iso-
tropic phases which ends at a critical point when the chirality FIG. 12. Inverse intensity (on a linear scalevs temperaturée

is increased. The appropriate physical quantity to be used d@sr q,=0.4. This allows for direct comparison with the experimen-
an order parameter is the susceptibility of the alignment tental light scattering data at the isotropic—BP Il transitid.

temperature ¢
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because we have shown the dominance ofnthe2 modes proximations which possibly enhance the fluctuations at
in the mean field. The strongest fluctuating modes shouldmall chiralities.
also be them=2 modes since they can be treated as pertur-
bations of the equilibrium modes. For the behavior of the
isotropic phase nothing new has to be expected when extend- ACKNOWLEDGMENTS
ing the first-order theory to other modes.

For increasing chirality the order of appearance of the This project was supported by the Deutsche Forschungs-
cubic phases is still firsD?, thenO8, in disagreement with gemeinschaft under Grant No. Tr 154/15-1. We thank A.
experiment. It may be resolved by use of higher-order apRudinger for useful discussions.
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